Publications

Future land use and land cover influences on regional biogenic emissions and air quality in the United States

Citation

Chen, J., Avise, J., Guenther, A., Wiedinmyer, C., Salathé, E.P., Jackson, R.B., Lamb, B. 2009. Future land use and land cover influences on regional biogenic emissions and air quality in the United States. Atmospheric Environment 43(36):5771-5780, doi:10.1016/j.atmosenv.2009.08.015.


Abstract

A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990-1999, Case 1) and three future cases covering 2045-2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4).

Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4).

Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of _5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%-28% due to future LULC changes.

Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.