Climate Change in the Skokomish River

A QUICK REFERENCE GUIDE FOR LOCAL DECISION-MAKERS

RAIN INTENSITY

Increase in intensity of 24-hour rain events west of the Cascades by the 2080s. (+5 to +34%)

STORM FREQUENCY

Increase in # days/year with heaviest 24-hour rain events west of the Cascades. Projected to go from 2 days currently to 7 days by the 2080s. (+2 to +7 days)

SUMMER PRECIPITATION

Decrease in total summer precipitation in Puget Sound by the 2050s. (-2% to -50%)

DOMINANT PRECIPITATION

The Skokomish Basin will remain a rain dominant system.

SPRING SNOWPACK

Loss of snowpack for all mountains draining into Puget Sound by the 2040s. (-4% to -47%)

STREAMFLOW TIMING

Change in timing of peak spring flows by the 2080s. (38 to 56 days earlier)

STREAMFLOW 100-YEAR FLOOD

Increase in streamflow volume by the 2080s. (+4 to +59%)

STREAMFLOW 10-YEAR MINIMUM

Decrease in the lowest summer streamflow volume (7Q10 flows) projected by the 2080s. (-8 to -22%)

SEA LEVEL RISE

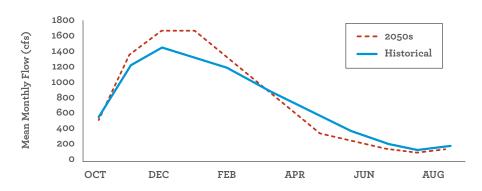
Projected sea level rise for the Skykomish estuary by the 2050s. (+4 to +14 in.)

STREAM TEMPERATURE

Increase in mean August water temperature by the 2040s.

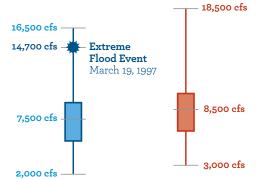
RIVER MILES EXCEEDING SALMON THERMAL TOLERANCES

River miles with average August temperatures above 64°F projected by the 2040s.



GROWING DEGREE DAYS (GDD)

Increase in number of growing degree days—accumulated heat over the growing season—by the 2050s. (+500 to +1300°F days)


S. FORK SKOKOMISH RIVER NEAR UNION

MONTHLY FLOWS

Peak flows of the Skokomish River could see increases in winter peak flows by mid-century.

PEAK ANNUAL FLOWS

Mean peak flows and minimum/maximum ranges observed (1950-2017) and projected for future (2050s).

* The data presented summarize mean values from multiple independent studies; reference dates and more details are provided in the State of Knowledge: Climate Change in the Puget Sound Report (Mauger et al., 2015). All projections are based on a high emissions scenario (RCP 8.5), except for snowpack, streamflow, and stream temperature estimates which used moderate emissions scenario (A1B).

The Skokomish Estuary Will Continue to See Increases in Sea Level

- > Continued sea level rise will increase the extent, depth and duration of coastal flooding and accelerate erosion along the shoreline. It will also permanently inundate low-lying areas.
- > In 30 years, there is a 90% probability that sea level will rise at least 0.5 ft at the mouth of the Skokomish River, if greenhouse gas emissions continue to rise at a rapid pace.
- > Although storm surge and waves are not expected to get bigger, higher sea level means that the same storm events would result in higher water levels and more damage.

Rain Storms are Expected to Become More Frequent and Severe

- > Atmospheric rivers will bring more rain. **Preliminary research** suggests that the 2-year extreme in hourly rain intensity could increase by +18% over the next 30 years.
- > Heavier rain events could exceed the capacity of urban stormwater systems, culverts, and drainage ditches that are not designed to accommodate projected increases in rain intensity.

Flooding to Become More Frequent and Severe

- > The Skokomish Valley will see increased winter flooding, due to a combination of more severe rainstorms, sea level rise, and earlier peak flows, as winter snowpack declines.
- > Increasing temperatures could drive a shift from snow to rain, leading to less snow accumulation and greater peak streamflows in winter.
- > Sea level rise, heavier rainstorms, and increased winter streamflows would all combine to make floods bigger and more frequent.

REFERENCES

Mauger, G.S., J.H. Casola, H.A. Morgan, R.L. Strauch, B. Jones, B. Curry, T.M. Busch Isaksen, L. Whitely Binder, M.B. Krosby, and A.K. Snover, 2015. State of Knowledge: Climate Change in Puget Sound. Report prepared for the Puget Sound Partnership and the National Oceanic and Atmospheric Administration. Climate Impacts Group, University of Washington, Seattle. doi:10.7915/CIG93777D. Available at https://cig.uw.edu/resources/specialVreports/psVsok/

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E., 2016, Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014 (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5118, 70 p., http://dx.doi.org/10.3133/sir20165118.

Miller, I.M., Morgan, H., Mauger, G., Newton, T., Weldon, R., Schmidt, D., Welch, M., Grossman, E. 2018. Projected Sea Level Rise for Washington State – A 2018 Assessment. A collaboration of Washington Sea Grant, University of Washington Climate Impacts Group, Oregon State University, University of Washington, and US Geological Survey. Prepared for the Washington Coastal Resilience Project. http://www.wacoastalnetwork.com/washington-coastal-resilience-project.html

Isaak, D.J.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Hostetler, S.W.; Luce, C.H.; Dunham, J.B.; Kershner, J.L.; Roper, B.B.; Nagel, D.E.; Chandler, G.L.; Wollrab, S.P.; Parkes, S.L.; Horan, D.L. 2016. NorWeST modeled summer stream temperature scenarios for the western U.S. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2016-0033. Interactive Viewer available online at https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html.