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Purpose 

The current version of the Stormwater Heatmap includes one dynamically downscaled 

projection, based on the GFDL-CM3 model. There are two limitations to the current 

approach. First, it is based on just one climate model projection. Given that there is no way 

to objectively rank one climate change projection over another, best practices in climate 

change analysis suggest analyzing the potential effects of multiple projections (e.g., 

Ransom et al., 2018). Second, the results for the GFDL-CM3 model projection were used 

directly, without any correction for biases. Recent work has identified biases in these 

projections that must be corrected prior to use in hydrologic modeling (e.g. Mauger et al. 

2021). The purpose of this project was to improve on the climate projections in the 

Stormwater Heatmap tool by addressing these two limitations. Specifically, we developed 

an ensemble of dynamically downscaled projections, bias-corrected based on comparisons 

with observations. 
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Background 

Stormwater Heatmap 

This Stormwater Heatmap was developed by The Nature Conservancy, Geosyntec 

Consultants, and Cheva Consultants with collaboration from the UW Climate Impacts 

Group, the Washington Department of Fish & Wildlife, and the NOAA Office of Coastal 

Management. Funding was provided by The Boeing Company. 

The tool estimates runoff and associated water quality issues across the lowlands of Puget 

Sound. Runoff estimates are developed using the Hydrologic Simulation Program FORTRAN 

(HSPF). Model parameters for the Puget Lowlands were originally calibrated by Dinicola et 

al. (1990), then updated by Clear Creek Solutions (Department of Ecology, 2014). In addition 

to modeling estimates of runoff, the team uses linear mixed-effects models to estimate 

pollutant loadings for a range of water quality metrics. All results are pre-calculated for 

distinct hydrologic response units and are aggregated using a lookup table approach, 

which facilitates rapid visualization and allows others to estimate local runoff and water 

quality conditions under different land cover or management scenarios. 

Dynamically Downscaled Projections 

“Downscaling” refers to methods that relate coarse scale global climate model (GCM) 

projections to local-scale changes of relevance to management. Past research has primarily 

used “statistical downscaling”, which relies on empirical relationships between weather 

observations and GCM output. Recent research has shown that “dynamical downscaling”, in 

which a regional climate model is used to downscale GCM projections, can more accurately 

represent changes, particularly for extreme precipitation and in areas with complex 

topography (Salathé et al. 2014). This work leverages existing dynamically downscaled 

datasets that have been developed in recent years (Chen et al. 2018, Mass et al. 2022). 

These are described in more detail below.  
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Observed Data 

Reference Datasets 

We considered four sources of observational data for evaluating the model projections 

(Table 1). Initial evaluation revealed that the Quantitative Precipitation Estimates (QPE) and 

Integrated Multi-satellitE Retrievals for GPM (IMERG) datasets were not suitable for use in 

this study. The IMERG results showed very little spatial detail as well as non-sensical results 

for most of the metrics considered. For instance, the climatology for Oct-Dec precipitation 

from IMERG showed none of the spatial detail present in the other two datasets, in spite of 

well-documented and significant gradients across the Puget Sound catchment. The QPE 

data appeared reliable but the available record for Puget Sound was too short to provide 

statistically robust comparisons. Although the national dataset spans from 2002-2023, 

most is missing data for Puget Sound, leaving only a little over 2 years of valid data (Apr-Jun 

2003, Jun 2019 - Jun 2021). We deemed this insufficient for evaluating the dynamically 

downscaled projections. As a result of eliminating these two datasets, all gridded 

comparisons were made using the daily gridded meteorology from the Parameter 

Regression on Independent Slopes Model dataset (PRISM, Daly et al. 2008, Daly et al. 2021). 

We also used hourly precipitation measurements from weather stations to perform point 

comparisons with the dynamically downscaled projections (Table 2, Figure 1). These were 

obtained from the “Global Hourly” dataset (ds3505) in the NOAA Integrated Surface 

Database (ISD). All of the stations identified are part of the Automated Surface Observing 

Systems (ASOS) network, which was designed to monitor weather conditions at airports. 

We extracted field “AA1”, corresponding to “LIQUID-PRECIPITATION” from the data files. All 

data provided by NOAA include data quality flags that can be used to process the data. We 

Table 1. Reference datasets to be evaluated for use in bias correcting the dynamically 

downscaled projections. 

Name Resolution Years Citation 

Parameter Regression on Independent Slopes Model 

(PRISM) 

800 m / 

Monthly 

1991-

2020 

Daly et al. 

2008 

National Centers for Environmental Prediction (NCEP) 

National Stage IV Quantitative Precipitation Estimate 

(QPE) Product 

4 km / 

Hourly 

2002-

2023 

Nelson et 

al. 2016 

National Aeronautics and Space Administration (NASA) 

Integrated Multi-satellitE Retrievals for GPM (IMERG) 

0.1° / 

30 min 

2000-

2021 

Huffman et 

al. 2018 

Weather station data (ds3505; see Table 2) 
N/A / 

Hourly 
varies N/A 
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filtered out any data with a “condition code” other than Trace. For “Trace”, we assumed 

zero precipitation. For the “quality code”, we removed all data except those flagged as 

“Passed all quality control checks”.  

Table 1. Weather stations used in the analysis. All sites include hourly precipitation 

data and were obtained from the “Global Hourly” dataset (ds3505) in the NOAA 

Integrated Surface Database (ISD). 

Station ID Latitude Longitude Years 

Bellingham 72797624217 48.794N 122.537W 1973-present 

Bremerton 72792894263 47.483N 122.767W 2006-present 

Friday Harbor 72798594276 48.522N 123.023W 2006-present 

Olympia Airport 72792024227 46.973N 122.903W 1973-present 

Quillayute 72797094240 47.938N 124.555W 1973-present 

Quinault 99999904237 47.514N 123.812W 2006-present 

SeaTac 72793024233 47.445N 122.314W 1948-present 

 

 

Figure 1. Map showing the locations for the weather 

stations used in the analysis. The Puget Sound domain 

is outlined in green. 
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Model Data 

Global Climate Model (GCM) Projections  

GCM projections were obtained from the Climate Model Inter-comparison Project, phase 5 

(CMIP5; Taylor et al., 2012). The twelve GCMs included in the WRF ensemble (Table 1) were 

chosen based on Brewer et al. (2016), who selected GCMs by prioritizing which model 

would be selected from each modeling center, as follows: (i) selecting the higher resolution 

model for each modeling center, and (ii) selecting models with the best agreement with 

observations of surface temperature, sea level pressure, and 500 hPa geopotential heights 

in the Pacific Northwest region. We note that other approaches to ranking could come up 

with different rankings (e.g. Rupp et al. 2013), though research suggests that it is most 

important to include an ensemble of models (e.g. Brekke et al. 2008). Brewer et al. (2016) 

identified 17 GCMs in total, but only 12 included the variables needed to provide boundary 

conditions to the regional climate model, described below.   

Additional information on model evaluation and ranking is summarized in Mauger and 

Won (2019). In addition, Mauger and Won (2019) discuss approaches for using RCP 8.5 

projections as an analog for what might be projected for the RCP 4.5 scenario. For example, 

the 2080s in the RCP 4.5 projections appear to correspond approximately to the 2040s or 

2050s in the RCP 8.5 projections. 

Regional Climate Model 

Regional Climate Model simulations were produced using the Weather Research and 

Forecasting (WRF, http://www.wrf-model.org; Skamarock et al., 2005) community 

mesoscale model. We used two WRF datasets: 

1. An observationally based historical simulation developed by PNNL (Chen et al. 

2018), driven by meteorological fields obtained from the North American Regional 

Reanalysis (NARR; https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html). This 

simulation was developed using WRF version 3.8 and implemented at a spatial 

resolution of 6 km spanning the years 1981-2020. Hereafter referred to as “WRF-

NARR”. 

2. An ensemble of 12 WRF projections (Mass et al. 2022), driven by global climate 

projections obtained from the Coupled Model Intercomparison Project Phase 5 

dataset (CMIP5; Taylor et al. 2012; http://cmip-pcmdi.llnl.gov/cmip5/). These 

simulations were implemented using WRF version 3.8 at a spatial resolution of 12 

km, spanning the years 1970-2099. Hereafter referred to as “WRF-CMIP5”.  
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Table 2. The twelve global climate models (GCMs) used as input to the regional model 

simulations. All simulations are based on the high-end RCP 8.5 greenhouse gas scenario 

(Van Vuuren et al., 2011). 

Model Center 
Resolution 

(degrees) 

Vertical 

Levels 

ACCESS1-0 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Australia/ Bureau of 

Meteorology, Australia 

1.25 x 1.88 38 

ACCESS1-3 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Australia/ Bureau of 

Meteorology, Australia 

1.25 x 1.88 38 

bcc-csm1-1 
Beijing Climate Center (BCC), China Meteorological 

Administration  
2.8 × 2.8 26 

CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8 35 

CCSM4 National Center of Atmospheric Research (NCAR), USA  1.25 × 0.94 26 

CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO) / Queensland Climate Change 

Centre of Excellence, Australia  

1.8 × 1.8 18 

FGOALS-g2 
LASG, Institute of Atmospheric Physics, Chinese 

Academy of Sciences  
2.8 × 2.8 26 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

GISS-E2-H NASA Goddard Institute for Space Studies, USA 2.5 × 2.0 40 

MIROC5 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for Marine-

Earth Science and Technology 

1.4 × 1.4 40 

MRI-CGCM3 Meteorological Research Institute, Japan 1.1 × 1.1 48 

NorESM1-M Norwegian Climate Center, Norway  2.5 × 1.9 26 
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In both cases, the driving data (NARR, CMIP5 GCMs) provides the initial and boundary 

conditions for the WRF model simulations.  

The new ensemble of WRF projections includes one simulation for each of the GCMs listed 

in Table 2, all based on the high-end RCP 8.5 greenhouse gas scenario (Van Vuuren et al., 

2011). All simulations are archived at an hourly time step. Model outputs include a spatially 

gridded time-series of meteorological variables: temperature (°C), relative humidity (%), 

precipitation (mm), wind speed (m/s), and incoming short- and long-wave radiation (W/m2), 

among others. 
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Approach 

Evaluation 

All comparisons with observations focused on the WRF-NARR simulation, since it is forced 

by observed conditions (in contrast, the CMIP5 simulations are “free running” and do not 

match the time series of observed weather and climate conditions). We compared gridded 

estimates of both seasonal and extreme precipitation. Seasonal totals were compared for 

Oct-Dec, Jan-Mar, Apr-Jun, and Jul-Sep. These groupings were selected because they 

generally align with the climatology of precipitation, in particular the dry season, which is 

centered around August for Puget Sound. We compared the following quantiles of daily 

precipitation: 75th, 90th, 95th, 99th, 99.5th, and 99.9th. These were calculated using a standard 

empirical quantile estimator ((r-0.5)/n). For the point comparisons we explored the same 

seasonal totals and quantiles, and also compared the full probability distribution, total 

accumulation for discrete intensity bins, the lag correlation in hourly precipitation, and 

correlations for different precipitation durations. 

Bias Correction 

Bias-correction techniques can introduce spurious trends in climate projections, resulting 

in erroneous impacts projections for the future. To avoid such errors, we only apply 

corrections that are time-invariant in their effects. Since we anticipate that biases will not 

be the same for all precipitation intensities, we use the “percentile-delta” bias correction 

approach, developed by Mauger et al. (2016). In this approach, different corrections are 

applied to different precipitation intensities, binned so as to ensure an adequate sample 

size. In our case, we used PRISM daily precipitation to bias-correct WRF daily precipitation 

totals, applying the same scaling to all hourly precipitation totals within each day. PRISM 

daily precipitation is based on the 24 hour total between 12pm and 12pm Universal Time 

for each day. We did not align this with the WRF definition of daily precipitation, which is 

based on local standard time (midnight to midnight), meaning that there is a four hour 

offset between these two definitions. Future work should align these to ensure the timing 

is consistent. 

The bias correction approach can be applied seasonally (e.g. with a moving window 

approach) if biases are found to vary by time of year. We found no evidence of a seasonal 

dependence in biases, which makes sense given that the mechanisms governing 

precipitation in the Puget Sound region are fairly consistent year-round. As a result, we did 

not apply a seasonally based correction. 
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We do not remove any trends prior to bias correction, in part because precipitation trends 

are not linear. This means that future precipitation events, which may exceed the 

maximum historical observation, are bias-corrected according based on the scaling 

obtained for the 99th-100th percentile. This could be a limitation in our current approach, 

since biases are likely more closely tied to the dynamics of storm events (e.g. pressure, 

winds) as opposed to their thermodynamic properties (e.g. precipitation intensity). The 

dynamics of storms are not projected to change appreciably, whereas precipitation 

intensity is projected to increase. Additional analysis would be needed to understand the 

implications of this assumption.  

The WRF results often exhibit precipitation that is below the “Trace” threshold typically 

used in observational records. To correct for this, we applied an additional correction, after 

bias correction, in which we zero out any hourly precipitation totals that are below a 0.1 

mm/hr. This threshold was determined in previous work based on the percentile at which 

hourly weather station observations transition from zero to non-zero precipitation. 

Finally, the WRF-CMIP5 simulations are bias-corrected but not evaluated in this study. 

Instead, we test the effectiveness of the bias-correction method using WRF-NARR, then 

apply the same approach to the WRF-CMIP5 results. New scalings are derived for each 

individual WRF-CMIP5 GCM projection, based on comparisons for the years 1981-2020. 

These distinct scalings are then applied to the full record (1970-2099) for each WRF-CMIP5 

projection. As noted above, no trends were removed prior to bias correction.  
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Results  

Gridded comparisons 

Maps comparing total precipitation for each season are shown in Figure 2 for the 

uncorrected WRF-NARR results. These show that WRF-NARR generally reproduces the 

magnitude and spatial distribution of seasonal precipitation across the region. Some biases 

 

Figure 2. Maps comparing seasonal total precipitation for PRISM (left) and WRF-

NARR (right). The Puget Sound domain is outlined in black. 
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are nonetheless evident, with WRF-NARR precipitation generally appearing to 

underestimate precipitation across most of the domain, except in the lee of the Olympics 

where WRF-NARR estimates are biased high. Results for the extremes in daily precipitation 

(Figure 3) are generally consistent with the seasonal biases, although there are some areas 

– including parts of the North Cascades, the Willapa Hills, and Mt Rainier – where WRF-

NARR appears to overestimate the amplification of precipitation over to the topography. 

 

Figure 3. As in Figure 2 except showing the 90th, 95th, 99th, and 99.5th percentiles 

in daily precipitation. 
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The WRF-NARR overestimates in the lee of the Olympics are even more pronounced than in 

the seasonal comparisons. These biases appear to be generally consistent with those 

found in other WRF datasets (e.g. Rasmussen et al. 2023, Liu et al. 2017). Finally, it is worth 

emphasizing that PRISM is an interpolated dataset and may also have biases. This means 

that disagreements between WRF and PRISM could be a result of biases in either dataset. 

Point comparisons 

Figure 4 shows the correlations between 

observed and WRF-NARR precipitation for 

Sea-Tac. These show that hourly precipitation 

from WRF-NARR is poorly correlated with 

observations, but that there is no major lag 

in its precipitation estimates. We initially 

hypothesized a lag due to the construction of 

the regional climate model simulations – 

since observed conditions are imposed at the 

model boundary, it is expected that the 

timing and location of events will vary slightly 

relative to the observations. Although timing 

differences are undoubtedly present, our lag 

correlations show that they are not 

systematically biased one way or another. 

We also compared correlations for different 

durations. As the plot shows, correlations 

increased systematically with duration, with 

the largest improvements going from 1-hour 

to 24-hour accumulations.  This suggests that 

time series comparisons with the WRF-NARR 

data are best applied to daily or longer 

durations. 

Timing is not the only measure of accuracy. For stormwater applications, a more important 

metric is the probability distribution of precipitation intensities. One way to evaluate this is 

to compare observed and modeled precipitation in a so-called “Q-Q” plot, in which the 

ranked data for each are compared. This is the same as comparing the probability 

distributions but provides an easier way of viewing the differences between the two. 

Another way to consider distributional biases is to evaluate the total precipitation that falls   

 
Figure 4. Correlation between observed 

precipitation at Sea-Tac and the WRF-

NARR estimates for the closest grid cell. 
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at different intensities. To do this we calculated the fraction of precipitation that falls in 

specific intensity bins, ranging up to the maximum observed hourly intensities. Both 

comparisons are shown below for Sea-Tac (Figure 5). These show that hourly precipitation 

from WRF-NARR is biased low across most intensities for the Sea-Tac location. This is 

confirmed in the binned precipitation comparison, which further shows that WRF-NARR has 

too much low-intensity precipitation and too little high-intensity precipitation. Although not 

shown, we found that these biases are consistent across all seasons, with no notable 

differences for different times of year. 

It is important to note that these comparisons are imperfect because they compare point 

observations to grid-averaged model estimates by PRISM and WRF-NARR. Due to the 

spatial averaging in the model estimates, we expect the extremes to be less pronounced 

than in the point observations from surface weather stations. This is especially true for the 

WRF-NARR simulations (6 km resolution), but is likely true as well for the PRISM results (800 

m resolution). Future work could use an “areal reduction factor” to address this issue (Kao 

et al. 2020). 

As noted above, we evaluated biases for six other stations in addition to Sea-Tac. Figure 6 

compares select quantiles for six ASOS weather stations against PRISM and WRF-NARR 

estimates for the same locations (in this and all subsequent plots, results for the Quinault 

station were omitted because the results were similar to those for Quillayute). Consistent 

with the bias maps shown above, we found that (1) WRF-NARR is generally biased low, (2) 

biases are different across precipitation intensities, and (3) the biases are not the same for 

 

Figure 5. Quantile-Quantile (“Q-Q” comparison, left) and binned precipitation totals (right, 

0-0.5 mm/hr, 0.5-1.0 mm/hr, etc.) for Sea-Tac and the nearest WRF-NARR grid cell. 
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all locations. Unlike the comparisons in Figures 4 and 5, these are based on daily 

precipitation, since the PRISM data is provided at a daily time step. Notably, the PRISM and 

ASOS results are not exactly in agreement. This could be due to the grid cell locations for 

PRISM, which do not align exactly with the ASOS locations, but could also reflect 

inaccuracies in the PRISM model. As noted above, another potential source of 

disagreement is the different resolution of the PRISM and WRF-NARR models. Regardless, 

since the PRISM model is our best option for gridded corrections, these disagreements with 

ASOS should be taken into consideration when using our results. 

Bias Correction 

We used daily PRISM data to bias-correct the WRF-NARR simulations. Although PRISM does 

not always agree with the ASOS observations, it is currently our best option for applying a 

spatially distributed correction. We opted to apply the “percentile-delta” bias correction 

described above, since the results above suggest that biases are not the same across all 

quantiles. Corrections were calculated as multiplicative scalars (e.g. multiplying by 1.11 to 

correct for a 10% dry bias). Since PRISM data is daily, we calculated a correction for each 

day, then applied it uniformly to all hours within that day. To avoid over-correcting, we did  

 

Figure 6. Comparing select quantiles in daily precipitation for the ASOS stations, PRISM, 

and WRF-NARR. Results are shown for the six ASOS stations shown in Figure 1. 
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not allow corrections larger than +100% (a factor of 2); we find that this is only the case for 

the low intensity bins. 

Since stormwater design is particularly sensitive to moderate and high intensity 

precipitation events, we tested three versions of the “percentile-delta” approach in which   

 

Figure 7. Percent bias in seasonal total precipitation for WRF-NARR 

relative to PRISM. 
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 the bin size was varied from 0.25 to 0.5 to 1.0 percentile per bin. Although not shown here, 

we found no appreciable difference between the three approaches. As a result we selected 

the largest bin size (1.0 percentile) in order to maximize the sample size within each bin. All 

of the comparisons in this section show results for this bin size. 

 

Figure 8. As in Figure 7 except showing biases in the 90th, 95th, 99th, 

and 99.5th percentiles in daily precipitation. 
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Figures 7 and 8 compare the WRF-NARR biases for seasonal precipitation and the same 

four quantiles in daily precipitation, respectively. These show dramatic improvements 

between the uncorrected (“raw”) and bias-corrected WRF-NARR results. Although biases are 

not eliminated with our approach, they are reduced to within approximately 10% of the 

PRISM estimates for all of the precipitation quantiles. Biases for seasonal precipitation are 

also reduced, but not as dramatically as for the daily quantiles. Larger biases are expected 

for the seasonal totals since the bias-correction is applied to daily precipitation and does 

not directly address seasonal totals. Nonetheless, the biases in the seasonal totals are 

significantly improved with the correction. 

In order to better inspect the corrections, we show the point comparisons for the same 

locations evaluated in the previous section. Figure 9 shows Q-Q plots comparing daily 

PRISM precipitation (x-axes) to both the uncorrected (raw) and bias-corrected (bc) WRF-

NARR results. In order to better view biases across all quantiles, the plots compare the log-

transformed precipitation. These confirm that the bias-correction successfully corrects the 

biases across all but the lowest and highest quantiles. For the extreme values, the binning 

 

Figure 9. Quantile-Quantile (Q-Q) comparisons of daily precipitation (mm) between 

PRISM (x-axes) and both uncorrected (“raw”) and bias-corrected (“bc”) WRF-NARR, for 

the six ASOS stations shown in Figure 1. 
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used in our percentile-delta approach does not fully resolve the differences in bias. An 

additional reason for persistent biases is that we capped the scalings at a factor of two. 

This likely explains the remaining biases across lower quantiles at the Bremerton location, 

for which the uncorrected WRF-NARR results are biased low by more than a factor of two. 

Finally, we note that since the PRISM precipitation estimates differ from the ASOS 

observations, our corrections do not necessarily lead to reductions in the biases relative to 

ASOS. In addition, the corrections are applied to daily precipitation as opposed to hourly 

precipitation, which may mean that biases in the hourly estimates remain. 
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