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Dynamically Downscaled Climate Projections

Purpose

The current version of the Stormwater Heatmap includes one dynamically downscaled
projection, based on the GFDL-CM3 model. There are two limitations to the current
approach. First, it is based on just one climate model projection. Given that there is no way
to objectively rank one climate change projection over another, best practices in climate
change analysis suggest analyzing the potential effects of multiple projections (e.g.,
Ransom et al., 2018). Second, the results for the GFDL-CM3 model projection were used
directly, without any correction for biases. Recent work has identified biases in these
projections that must be corrected prior to use in hydrologic modeling (e.g. Mauger et al.
2021). The purpose of this project was to improve on the climate projections in the
Stormwater Heatmap tool by addressing these two limitations. Specifically, we developed
an ensemble of dynamically downscaled projections, bias-corrected based on comparisons
with observations.
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Background

Stormwater Heatmap

This Stormwater Heatmap was developed by The Nature Conservancy, Geosyntec
Consultants, and Cheva Consultants with collaboration from the UW Climate Impacts
Group, the Washington Department of Fish & Wildlife, and the NOAA Office of Coastal
Management. Funding was provided by The Boeing Company.

The tool estimates runoff and associated water quality issues across the lowlands of Puget
Sound. Runoff estimates are developed using the Hydrologic Simulation Program FORTRAN
(HSPF). Model parameters for the Puget Lowlands were originally calibrated by Dinicola et
al. (1990), then updated by Clear Creek Solutions (Department of Ecology, 2014). In addition
to modeling estimates of runoff, the team uses linear mixed-effects models to estimate
pollutant loadings for a range of water quality metrics. All results are pre-calculated for
distinct hydrologic response units and are aggregated using a lookup table approach,
which facilitates rapid visualization and allows others to estimate local runoff and water
quality conditions under different land cover or management scenarios.

Dynamically Downscaled Projections

“Downscaling” refers to methods that relate coarse scale global climate model (GCM)
projections to local-scale changes of relevance to management. Past research has primarily
used “statistical downscaling”, which relies on empirical relationships between weather
observations and GCM output. Recent research has shown that “dynamical downscaling”, in
which a regional climate model is used to downscale GCM projections, can more accurately
represent changes, particularly for extreme precipitation and in areas with complex
topography (Salathé et al. 2014). This work leverages existing dynamically downscaled
datasets that have been developed in recent years (Chen et al. 2018, Mass et al. 2022).
These are described in more detail below.

3|Page Prepared by UW's Climate Impacts Group for King County
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Observed Data

Reference Datasets

We considered four sources of observational data for evaluating the model projections
(Table 1). Initial evaluation revealed that the Quantitative Precipitation Estimates (QPE) and
Integrated Multi-satellitE Retrievals for GPM (IMERG) datasets were not suitable for use in
this study. The IMERG results showed very little spatial detail as well as non-sensical results
for most of the metrics considered. For instance, the climatology for Oct-Dec precipitation
from IMERG showed none of the spatial detail present in the other two datasets, in spite of
well-documented and significant gradients across the Puget Sound catchment. The QPE
data appeared reliable but the available record for Puget Sound was too short to provide
statistically robust comparisons. Although the national dataset spans from 2002-2023,
most is missing data for Puget Sound, leaving only a little over 2 years of valid data (Apr-Jun
2003, Jun 2019 - Jun 2021). We deemed this insufficient for evaluating the dynamically
downscaled projections. As a result of eliminating these two datasets, all gridded
comparisons were made using the daily gridded meteorology from the Parameter
Regression on Independent Slopes Model dataset (PRISM, Daly et al. 2008, Daly et al. 2021).

Table 1. Reference datasets to be evaluated for use in bias correcting the dynamically
downscaled projections.

Name ‘ Resolution Years Citation
Parameter Regression on Independent Slopes Model 800 m/ 1991- Daly et al.
(PRISM) Monthly 2020 2008
Nat!onal Centers for En\{|rohmenta! FTreQ|ct|on FNCEP) dkm/ 2002- Nelson et
National Stage IV Quantitative Precipitation Estimate Hourl 2023 al. 2016
(QPE) Product y '
National Aeronautics and Space Administration (NASA) 0.1°/ 2000- Huffman et
Integrated Multi-satellitE Retrievals for GPM (IMERG) 30 min 2021 al. 2018
N/A/
Weather station data (ds3505; see Table 2) Hourly varies N/A

We also used hourly precipitation measurements from weather stations to perform point
comparisons with the dynamically downscaled projections (Table 2, Figure 1). These were
obtained from the “Global Hourly” dataset (ds3505) in the NOAA Integrated Surface
Database (ISD). All of the stations identified are part of the Automated Surface Observing
Systems (ASOS) network, which was designed to monitor weather conditions at airports.
We extracted field “AA1", corresponding to “LIQUID-PRECIPITATION” from the data files. All
data provided by NOAA include data quality flags that can be used to process the data. We
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filtered out any data with a “condition code” other than Trace. For “Trace”, we assumed
zero precipitation. For the “quality code”, we removed all data except those flagged as
“Passed all quality control checks”.

Table 1. Weather stations used in the analysis. All sites include hourly precipitation

data and were obtained from the “Global Hourly” dataset (ds3505) in the NOAA

Integrated Surface Database (ISD).

Station

\ Latitude

Longitude Years

Bellingham 72797624217 | 48.794N 122.537W | 1973-present
Bremerton 72792894263 | 47.483N 122.767W | 2006-present
Friday Harbor 72798594276 | 48.522N 123.023W | 2006-present
Olympia Airport 72792024227 | 46.973N 122.903W [ 1973-present
Quillayute 72797094240 | 47.938N 124.555W [ 1973-present
Quinault 99999904237 | 47.514N 123.812W | 2006-present
SeaTac 72793024233 | 47.445N 122.314W | 1948-present
‘— \12\'.‘\.\\.\. " '~; Pelingham ?3\‘
“'\‘l N oFriday Harbor (_,--'\é'
S5 ¢
OQu;Hayute ""‘3"\ 5" 3
Quin‘a_‘u.lt“ Bremerton 7. ’
Z_{; © Sea-Tac .("'
I_‘\.\_,\Q:C')Iympia ':"

Figure 1. Map showing the locations for the weather
stations used in the analysis. The Puget Sound domain
is outlined in green.
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Model Data

Global Climate Model (GCM) Projections

GCM projections were obtained from the Climate Model Inter-comparison Project, phase 5
(CMIP5; Taylor et al.,, 2012). The twelve GCMs included in the WRF ensemble (Table 1) were
chosen based on Brewer et al. (2016), who selected GCMs by prioritizing which model
would be selected from each modeling center, as follows: (i) selecting the higher resolution
model for each modeling center, and (ii) selecting models with the best agreement with
observations of surface temperature, sea level pressure, and 500 hPa geopotential heights
in the Pacific Northwest region. We note that other approaches to ranking could come up
with different rankings (e.g. Rupp et al. 2013), though research suggests that it is most
important to include an ensemble of models (e.g. Brekke et al. 2008). Brewer et al. (2016)
identified 17 GCMs in total, but only 12 included the variables needed to provide boundary
conditions to the regional climate model, described below.

Additional information on model evaluation and ranking is summarized in Mauger and
Won (2019). In addition, Mauger and Won (2019) discuss approaches for using RCP 8.5
projections as an analog for what might be projected for the RCP 4.5 scenario. For example,
the 2080s in the RCP 4.5 projections appear to correspond approximately to the 2040s or
2050s in the RCP 8.5 projections.

Regional Climate Model

Regional Climate Model simulations were produced using the Weather Research and
Forecasting (WRF, http://www.wrf-model.org; Skamarock et al., 2005) community
mesoscale model. We used two WRF datasets:

1. An observationally based historical simulation developed by PNNL (Chen et al.
2018), driven by meteorological fields obtained from the North American Regional
Reanalysis (NARR; https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html). This
simulation was developed using WRF version 3.8 and implemented at a spatial
resolution of 6 km spanning the years 1981-2020. Hereafter referred to as “WRF-
NARR".

2. Anensemble of 12 WRF projections (Mass et al. 2022), driven by global climate
projections obtained from the Coupled Model Intercomparison Project Phase 5
dataset (CMIP5; Taylor et al. 2012; http://cmip-pcmdi.linl.gov/cmip5/). These
simulations were implemented using WRF version 3.8 at a spatial resolution of 12
km, spanning the years 1970-2099. Hereafter referred to as “WRF-CMIP5".
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Table 2. The twelve global climate models (GCMs) used as input to the regional model
simulations. All simulations are based on the high-end RCP 8.5 greenhouse gas scenario
(Van Vuuren et al., 2011).

ACCESS1-0

ACCESS1-3

bcc-csm1-1

CanESM2

CCSM4

CSIRO-Mk3-6-0

FGOALS-g2

GFDL-CM3

GISS-E2-H

MIROCS

MRI-CGCM3

NorESM1-M

7|Page

Resolution Vertical
Center
(degrees) Levels

Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia/ Bureau of 1.25x 1.88 38
Meteorology, Australia
Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia/ Bureau of 1.25x 1.88 38
Meteorology, Australia
Be|J|r.1g.CI|mfate Center (BCC), China Meteorological 28x28 %6
Administration
Canadian Centre for Climate Modeling and Analysis 2.8x2.8 35
National Center of Atmospheric Research (NCAR), USA | 1.25x0.94 26
Commonwealth Scientific and Industrial Research
Organization (CSIRO) / Queensland Climate Change 1.8%x1.8 18
Centre of Excellence, Australia
LASG, Instltute.of Atmospheric Physics, Chinese 28x28 26
Academy of Sciences
NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5%x2.0 48
NASA Goddard Institute for Space Studies, USA 25x%x20 40
Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for

. . . 14%x1.4 40
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology
Meteorological Research Institute, Japan 1.1 %x1.1 48
Norwegian Climate Center, Norway 25x%x1.9 26
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In both cases, the driving data (NARR, CMIP5 GCMs) provides the initial and boundary
conditions for the WRF model simulations.

The new ensemble of WRF projections includes one simulation for each of the GCMs listed
in Table 2, all based on the high-end RCP 8.5 greenhouse gas scenario (Van Vuuren et al.,
2011). All simulations are archived at an hourly time step. Model outputs include a spatially
gridded time-series of meteorological variables: temperature (°C), relative humidity (%),
precipitation (mm), wind speed (m/s), and incoming short- and long-wave radiation (W/m2),
among others.
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Approach

Evaluation

All comparisons with observations focused on the WRF-NARR simulation, since it is forced
by observed conditions (in contrast, the CMIP5 simulations are “free running” and do not
match the time series of observed weather and climate conditions). We compared gridded
estimates of both seasonal and extreme precipitation. Seasonal totals were compared for
Oct-Dec, Jan-Mar, Apr-Jun, and Jul-Sep. These groupings were selected because they
generally align with the climatology of precipitation, in particular the dry season, which is
centered around August for Puget Sound. We compared the following quantiles of daily
precipitation: 75, 90™, 95, 99", 99,5™ and 99.9™. These were calculated using a standard
empirical quantile estimator ((r-0.5)/n). For the point comparisons we explored the same
seasonal totals and quantiles, and also compared the full probability distribution, total
accumulation for discrete intensity bins, the lag correlation in hourly precipitation, and
correlations for different precipitation durations.

Bias Correction

Bias-correction techniques can introduce spurious trends in climate projections, resulting
in erroneous impacts projections for the future. To avoid such errors, we only apply
corrections that are time-invariant in their effects. Since we anticipate that biases will not
be the same for all precipitation intensities, we use the “percentile-delta” bias correction
approach, developed by Mauger et al. (2016). In this approach, different corrections are
applied to different precipitation intensities, binned so as to ensure an adequate sample
size. In our case, we used PRISM daily precipitation to bias-correct WRF daily precipitation
totals, applying the same scaling to all hourly precipitation totals within each day. PRISM
daily precipitation is based on the 24 hour total between 12pm and 12pm Universal Time
for each day. We did not align this with the WRF definition of daily precipitation, which is
based on local standard time (midnight to midnight), meaning that there is a four hour
offset between these two definitions. Future work should align these to ensure the timing
is consistent.

The bias correction approach can be applied seasonally (e.g. with a moving window
approach) if biases are found to vary by time of year. We found no evidence of a seasonal
dependence in biases, which makes sense given that the mechanisms governing
precipitation in the Puget Sound region are fairly consistent year-round. As a result, we did
not apply a seasonally based correction.
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We do not remove any trends prior to bias correction, in part because precipitation trends
are not linear. This means that future precipitation events, which may exceed the
maximum historical observation, are bias-corrected according based on the scaling
obtained for the 99""-100"" percentile. This could be a limitation in our current approach,
since biases are likely more closely tied to the dynamics of storm events (e.g. pressure,
winds) as opposed to their thermodynamic properties (e.g. precipitation intensity). The
dynamics of storms are not projected to change appreciably, whereas precipitation
intensity is projected to increase. Additional analysis would be needed to understand the
implications of this assumption.

The WRF results often exhibit precipitation that is below the “Trace” threshold typically
used in observational records. To correct for this, we applied an additional correction, after
bias correction, in which we zero out any hourly precipitation totals that are below a 0.1
mm/hr. This threshold was determined in previous work based on the percentile at which
hourly weather station observations transition from zero to non-zero precipitation.

Finally, the WRF-CMIP5 simulations are bias-corrected but not evaluated in this study.
Instead, we test the effectiveness of the bias-correction method using WRF-NARR, then
apply the same approach to the WRF-CMIP5 results. New scalings are derived for each
individual WRF-CMIP5 GCM projection, based on comparisons for the years 1981-2020.
These distinct scalings are then applied to the full record (1970-2099) for each WRF-CMIP5
projection. As noted above, no trends were removed prior to bias correction.
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Results

Gridded comparisons

Maps comparing total precipitation for each season are shown in Figure 2 for the
uncorrected WRF-NARR results. These show that WRF-NARR generally reproduces the
magnitude and spatial distribution of seasonal precipitation across the region. Some biases

PRISM WRF

Jan-Mar

Apr-Jun 2150 mm
Jul-Sep 0mm
Oct-Dec

Figure 2. Maps comparing seasonal total precipitation for PRISM (left) and WRF-
NARR (right). The Puget Sound domain is outlined in black.
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are nonetheless evident, with WRF-NARR precipitation generally appearing to
underestimate precipitation across most of the domain, except in the lee of the Olympics
where WRF-NARR estimates are biased high. Results for the extremes in daily precipitation
(Figure 3) are generally consistent with the seasonal biases, although there are some areas
- including parts of the North Cascades, the Willapa Hills, and Mt Rainier - where WRF-
NARR appears to overestimate the amplification of precipitation over to the topography.

PRISM WRF
P90
P95 160 mm
P99 0mm
P995

Figure 3. As in Figure 2 except showing the 90", 95™, 99" and 99.5" percentiles
in daily precipitation.
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The WRF-NARR overestimates in the lee of the Olympics are even more pronounced than in
the seasonal comparisons. These biases appear to be generally consistent with those
found in other WRF datasets (e.g. Rasmussen et al. 2023, Liu et al. 2017). Finally, it is worth
emphasizing that PRISM is an interpolated dataset and may also have biases. This means
that disagreements between WRF and PRISM could be a result of biases in either dataset.

Point comparisons 0.4

Figure 4 shows the correlations between o

observed and WRF-NARR precipitation for
Sea-Tac. These show that hourly precipitation

=
&)

o
o
4]

0.2¢

from WRF-NARR is poorly correlated with

correlation (r)

observations, but that there is no major lag
in its precipitation estimates. We initially 0.1
hypothesized a lag due to the construction of 0.05
the regional climate model simulations - 0‘

0 8 16
since observed conditions are imposed at the lag (hrs)

model boundary, it is expected that the
timing and location of events will vary slightly 08
relative to the observations. Although timing
differences are undoubtedly present, our lag
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=}
T

correlations show that they are not

Correlation (r)
(=]
P

systematically biased one way or another.
We also compared correlations for different 02
durations. As the plot shows, correlations

increased systematically with duration, with 0

1 2 3 6 12 24 48 72 120 240

the largest improvements going from 1-hour Duration (hrs)

to 24-hour accumulations. This suggests that Figure 4. Correlation between observed
precipitation at Sea-Tac and the WRF-

time series comparisons with the WRF-NARR NARR estimates for the closest grid cell.

data are best applied to daily or longer
durations.

Timing is not the only measure of accuracy. For stormwater applications, a more important
metric is the probability distribution of precipitation intensities. One way to evaluate this is
to compare observed and modeled precipitation in a so-called “Q-Q” plot, in which the
ranked data for each are compared. This is the same as comparing the probability
distributions but provides an easier way of viewing the differences between the two.
Another way to consider distributional biases is to evaluate the total precipitation that falls

13| Page Prepared by UW's Climate Impacts Group for King County



Dynamically Downscaled Climate Projections

at different intensities. To do this we calculated the fraction of precipitation that falls in
specific intensity bins, ranging up to the maximum observed hourly intensities. Both
comparisons are shown below for Sea-Tac (Figure 5). These show that hourly precipitation
from WRF-NARR is biased low across most intensities for the Sea-Tac location. This is
confirmed in the binned precipitation comparison, which further shows that WRF-NARR has
too much low-intensity precipitation and too little high-intensity precipitation. Although not
shown, we found that these biases are consistent across all seasons, with no notable
differences for different times of year.

It is important to note that these comparisons are imperfect because they compare point
observations to grid-averaged model estimates by PRISM and WRF-NARR. Due to the
spatial averaging in the model estimates, we expect the extremes to be less pronounced
than in the point observations from surface weather stations. This is especially true for the
WRF-NARR simulations (6 km resolution), but is likely true as well for the PRISM results (800
m resolution). Future work could use an “areal reduction factor” to address this issue (Kao
et al. 2020).

As noted above, we evaluated biases for six other stations in addition to Sea-Tac. Figure 6
compares select quantiles for six ASOS weather stations against PRISM and WRF-NARR
estimates for the same locations (in this and all subsequent plots, results for the Quinault
station were omitted because the results were similar to those for Quillayute). Consistent
with the bias maps shown above, we found that (1) WRF-NARR is generally biased low, (2)
biases are different across precipitation intensities, and (3) the biases are not the same for

Q-Q comparison Binned Precip Totals
18
[ OBsS | |
— I \WRF
E
g )
e + c
3 + m
£ 10 w =
> i+ Q
= -+ c
3 K]
5] = 10
I 6 %
B &
=
2 + data.
1:1 line

N . N . , " N " 0 Lifs e e m. - . N

2 6 10 14 18 2 6 10 14 18

Observed Hourly Precip (mm) Hourly Precip (mm)

Figure 5. Quantile-Quantile (“Q-Q"” comparison, left) and binned precipitation totals (right,
0-0.5 mm/hr, 0.5-1.0 mm/hr, etc.) for Sea-Tac and the nearest WRF-NARR grid cell.
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Figure 6. Comparing select quantiles in daily precipitation for the ASOS stations, PRISM,
and WRF-NARR. Results are shown for the six ASOS stations shown in Figure 1.

all locations. Unlike the comparisons in Figures 4 and 5, these are based on daily
precipitation, since the PRISM data is provided at a daily time step. Notably, the PRISM and
ASOS results are not exactly in agreement. This could be due to the grid cell locations for
PRISM, which do not align exactly with the ASOS locations, but could also reflect
inaccuracies in the PRISM model. As noted above, another potential source of
disagreement is the different resolution of the PRISM and WRF-NARR models. Regardless,
since the PRISM model is our best option for gridded corrections, these disagreements with
ASOS should be taken into consideration when using our results.

Bias Correction

We used daily PRISM data to bias-correct the WRF-NARR simulations. Although PRISM does
not always agree with the ASOS observations, it is currently our best option for applying a
spatially distributed correction. We opted to apply the “percentile-delta” bias correction
described above, since the results above suggest that biases are not the same across all
quantiles. Corrections were calculated as multiplicative scalars (e.g. multiplying by 1.11 to
correct for a 10% dry bias). Since PRISM data is daily, we calculated a correction for each
day, then applied it uniformly to all hours within that day. To avoid over-correcting, we did
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not allow corrections larger than +100% (a factor of 2); we find that this is only the case for
the low intensity bins.

Since stormwater design is particularly sensitive to moderate and high intensity
precipitation events, we tested three versions of the “percentile-delta” approach in which

Bias-Corrected

Jan-Mar ) s |
- +50%

Jul-Sep .
Oct-Dec

Figure 7. Percent bias in seasonal total precipitation for WRF-NARR
relative to PRISM.
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the bin size was varied from 0.25 to 0.5 to 1.0 percentile per bin. Although not shown here,
we found no appreciable difference between the three approaches. As a result we selected
the largest bin size (1.0 percentile) in order to maximize the sample size within each bin. All
of the comparisons in this section show results for this bin size.

Raw ] B\i‘asvac?rrected
P90
P95 © s
P99 s
P995

Figure 8. As in Figure 7 except showing biases in the 90, 95, 99,
and 99.5" percentiles in daily precipitation.
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Figures 7 and 8 compare the WRF-NARR biases for seasonal precipitation and the same
four quantiles in daily precipitation, respectively. These show dramatic improvements
between the uncorrected (“raw”) and bias-corrected WRF-NARR results. Although biases are
not eliminated with our approach, they are reduced to within approximately 10% of the
PRISM estimates for all of the precipitation quantiles. Biases for seasonal precipitation are
also reduced, but not as dramatically as for the daily quantiles. Larger biases are expected
for the seasonal totals since the bias-correction is applied to daily precipitation and does
not directly address seasonal totals. Nonetheless, the biases in the seasonal totals are
significantly improved with the correction.

In order to better inspect the corrections, we show the point comparisons for the same
locations evaluated in the previous section. Figure 9 shows Q-Q plots comparing daily
PRISM precipitation (x-axes) to both the uncorrected (raw) and bias-corrected (bc) WRF-
NARR results. In order to better view biases across all quantiles, the plots compare the log-
transformed precipitation. These confirm that the bias-correction successfully corrects the
biases across all but the lowest and highest quantiles. For the extreme values, the binning

Q-Q comparisons

100¢ Quillayute ’ Friday Harbor Bellingham

10

raw
bc
1:1line

o
—

100} Bremerton A Olympia Sea-Tac

WRF Daily Precip (mm)

—_
o

0.1
0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

PRISM Daily Precip (mm)

Figure 9. Quantile-Quantile (Q-Q) comparisons of daily precipitation (mm) between
PRISM (x-axes) and both uncorrected (“raw”) and bias-corrected (“bc”) WRF-NARR, for
the six ASOS stations shown in Figure 1.
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used in our percentile-delta approach does not fully resolve the differences in bias. An
additional reason for persistent biases is that we capped the scalings at a factor of two.
This likely explains the remaining biases across lower quantiles at the Bremerton location,
for which the uncorrected WRF-NARR results are biased low by more than a factor of two.
Finally, we note that since the PRISM precipitation estimates differ from the ASOS
observations, our corrections do not necessarily lead to reductions in the biases relative to
ASOS. In addition, the corrections are applied to daily precipitation as opposed to hourly
precipitation, which may mean that biases in the hourly estimates remain.
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